博客
关于我
3D Object Detection with Pointformer
阅读量:579 次
发布时间:2019-03-09

本文共 977 字,大约阅读时间需要 3 分钟。

没错!Transformer的"魔爪"已经伸向3D目标检测了。

Pointformer:用于3D点云的特征学习backbone,可结合并提高现有的3D点云目标检测网络性能,如VoteNet、PointRCNN和CBGS等。

注:文末附【Transformer】和【3D目标检测】学习交流群

Transformer最近在3D点云方向应用的工作可以看一下:

Pointformer

3D Object Detection with Pointformer

在这里插入图片描述

  • 作者单位:清华大学(黄高团队), 亚马逊Alexa AI等
  • 论文:https://arxiv.org/abs/2012.11409

由于3D点云数据的不规则性,从点云进行3D目标检测的特征学习非常具有挑战性。

在本文中,我们提出了Pointformer,这是专为3D点云设计的Transformer backbone,可以有效地学习特征。

在这里插入图片描述

具体而言,采用Local Transformer模块对局部区域中的点之间的交互进行建模,从而在对象级别学习上下文相关的区域特征。Global Transformer旨在学习场景级别的上下文感知表示。

为了进一步捕获多尺度表示之间的依赖关系,我们提出了“Local-Global Transformer”,以将局部特征与高分辨率的全局特征集成在一起。此外,我们引入了一个有效的坐标优化模块,以将向下采样的点移动到更靠近对象质心的位置,从而改善了对象proposal的生成。

在这里插入图片描述

Local Transformer

在这里插入图片描述

主要贡献:

在这里插入图片描述

实验结果

我们将Pointformer用作最新目标检测模型的基础,并在室内和室外数据集上展示了优于原始模型的重大改进。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

Transformer交流群

已建立CVer-Transformer微信交流群!想要进Transformer学习交流群的同学,可以直接加微信号:CVer5555。加的时候备注一下:Transformer+学校+昵称,即可。然后就可以拉你进群了。

3D目标检测交流群

建了CVer-目标检测交流群!想要进检测学习交流群的同学,可以直接加微信号:CVer5555。加的时候备注一下:3D目标检测+学校+昵称,即可。然后就可以拉你进群了。

强烈推荐大家关注CVer知乎账号和CVer微信公众号,可以快速了解到最新优质的CV论文。

在这里插入图片描述

转载地址:http://kkwsz.baihongyu.com/

你可能感兴趣的文章
NLTK - 停用词下载
查看>>
nmap 使用总结
查看>>
nmap 使用方法详细介绍
查看>>
nmap使用
查看>>
nmap使用实战(附nmap安装包)
查看>>
Nmap哪些想不到的姿势
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
nmap指纹识别要点以及又快又准之方法
查看>>
Nmap渗透测试指南之指纹识别与探测、伺机而动
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NMF(非负矩阵分解)
查看>>
nmon_x86_64_centos7工具如何使用
查看>>
NN&DL4.1 Deep L-layer neural network简介
查看>>
NN&DL4.3 Getting your matrix dimensions right
查看>>
NN&DL4.7 Parameters vs Hyperparameters
查看>>
NN&DL4.8 What does this have to do with the brain?
查看>>
nnU-Net 终极指南
查看>>
No 'Access-Control-Allow-Origin' header is present on the requested resource.
查看>>
No 'Access-Control-Allow-Origin' header is present on the requested resource.
查看>>